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Abstract

In this paper we discuss a new iterative method that is suited for regular-
ization of the series of large linear least squares problems. In each problem in
the series the same rank-deficient coefficient matrix A is used and weighted
in a specific manner. The main feature of these problems is that the matrix
A (not necessarily sparse) is having a cluster of small singular values, and
there is a well-determined gap between its large and small singular values.

The new algorithm uses (only once) properly chosen Hauseholder post-
multiplications. These transformations provide an elegant way to extract a
well-conditioned core subproblems of minimum dimension both for the linear
least squares and the total least squares problem. Next, a modified version
of the LSQR algorithm of Paige and Saunders is used to solve the particular
weighted problems in a row. A partial reorthogonalization for maintaining
semi-orthogonality among the Lanczos vectors is used.

Examples showing promising results from numerical experiments are pre-
sented. As a by-product a new and effective spectral matrix norm estimator
is given. Possible applications to signal processing, image processing, mul-
tiple linear regression and geographically weighted regression (GWR) are
mentioned.
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